モバイル向けに痩身の機械学習/ディープラーニングモデルを作るTensorFlow LiteがGoogle I/Oで発表

次の記事

Disrupt NYの最優秀スタートアップはRecordGram――モバイルで音楽の制作からビジネスまでカバー

今日(米国時間5/17)のGoogle I/OでAndroidの将来について話す中で、エンジニアリング担当VP Dave Burkeは、モバイル向けに最適化されたTensorFlow、TensorFlow Liteを発表した。デベロッパーはこのライブラリを使って、Androidスマートフォンで動く痩身のディープラーニングモデルを作れる。

Googleはこのところますます多くの、Android上で動くAIを使ったサービスを展開しているから、それ専用の小さくて速いモデルを作れるフレームワークを使うのも当然だ。このAPIも年内にはオープンソースでリリースされる予定だ。

昨年はFacebookが、Caffe2Goを発表した。それもやはり、同社のディープラーニングフレームワークCaffeのモバイル用バージョンで、モバイルデバイスに合ったモデルを作れることがねらいだ。Facebookはこれを使ってリアルタイムの写真整形ツールStyle Transferを作り、それはまた、今後のプロダクトやサービスの基盤にもなるものだ。

ただし、モデルを作るための教育訓練は、あまりにも計算集約的な処理なのでスマートフォン上でやるのはまだ無理だ。いや、訓練済みのモデルですら、従来のものはモバイルには重すぎた。でもモデルがデバイス上で使えれば、状況によってはクラウドとインターネットがまったく要らなくなる。スマートフォン上のディープラーニングのパフォーマンスが、より安定するだろう。

TensorFlow Liteは、AIとモバイルデバイスの結合というGoogleのビジョンをさらに前進させる。そしてその次の段階としては、TensorFlow Liteが活躍する場を増やすための、さまざまな専用ハードウェアの開発ではないだろうか。



[原文へ]
(翻訳:iwatani(a.k.a. hiwa))