user interfaces
conversation
artificial intelligence

Rasa Coreはチャットボットのコンテキスト判断用機械学習モデルを人間参加の半自動で作る

次の記事

スマートスピーカー「Google Home」「Google Home Mini」が日本にやってきた——明日10月6日より発売

会話を扱うコンピューターシステムにとっては、コンテキストがすべてだ。人間はそのことを意識しないけど、日常のとてもシンプルな会話でさえ、複雑なコンテキストの産物だ。会話システムが人間の能力になかなか追いつかないのも、コンテキストという難問があるためだ。しかしベルリンのRasaは、対話的な学習とオープンソースのコードを利用して、この会話するAIの問題を解決しようとしている。

そのRasa Coreというシステムのやり方は、多くのAIスタートアップと似ていて、Amazonの
Mechanical Turkのような人力サービスを利用して機械学習のモデルが持つ不正確さを修正する。ただしRasaが使うのはMechanical Turkではなく、誰でも参加できる方式で、開発中のボットと人が短い会話をし、それによりモデルを訓練しアップデートしていく。

人とボットが会話をする様子を、上の図で見ることができる。上図では「利息を比較する」にチェックが入っているが、それは、ユーザーが求めている確率がもっとも高いと思われるアクションだ。それを見た人間トレーナーは、正しい/正しくないで答える。その結果をモデルは学習し、次に同じ状況に直面したら、もうその質問をしない。

Rasaのチームによると、ボットが使い物になるまでに行う人間とのサンプル会話は、数十回で十分だ。しかし、もっとたくさんやれば精度は上がるし、ユーザーフレンドリーにもなるだろう。

“IBMがWatsonで作った会話モデルを見たけど、ちょっとがっかりした”、とRasaの顧客の大手保険会社Helveticaに勤務し、会話型AIのプロマネでもあるFlorian Nägeleは述べる。“決定木が一つだけで、コンテキストをほかの木に持っていけない”、と彼はWatsonについて言う。

Rasaのよいところは、訓練データなしで顧客が自力でモデルを作れることだ。理想的には誰もがサンプル会話の自分用の大きなコーパスを持っていて、それを使って会話システムを訓練することだが、技術スタッフのいない企業では、それも難しい。

Rasa Coreは、オープンソースとしてGitHub上にある。またRasa Coreと本誌が昨年12月に取り上げたRasa NLUには、企業向け有料バージョンもある。有料版には、アドミン用管理インタフェイスや、カスタマーサポート、テストの自動化、コラボレーションによるモデルの訓練、といったサービスが付随する。

[原文へ]
(翻訳:iwatani(a.k.a. hiwa))