Amazon Comprehendでは機械学習の技術とは無縁なデベロッパーでも専門用語で自然言語処理モデルを訓練できる

次の記事

ジョニー・アイヴ、iPhoneのマルチタッチや創造プロセスを語る。「Macを開発した人と確かな繋がりを感じた」

昨年Amazonは、自然言語処理のツールComprehendを発表した。それは情報のコーパスから、よく使われている語や語句を取り出し、ドキュメントを分類する。今日Amazonは同社のデベロッパーカンファレンスRe:inventに一週間先駆けて、Comprehendの機能向上を発表した。それにより機械学習の専門知識のないデベロッパーでも、専門用語や語句のリストを作るだけで機械学習のモデルを構築できる。

その機能アップを発表するブログ記事で、AmazonのディープラーニングとAIのゼネラルマネージャーMatt Woodがこう書いている: “本日Comprehendに新しいカスタム化機能を導入することを嬉しく思う。これによってデベロッパーは、Comprehendを拡張して自然言語で書かれている用語を見つけ、チームや企業や業界にとって専門的なテキストを分類できる”。

重要なのは、すべての複雑な処理をAmazonが面倒見るので、機械学習や自然言語処理の素養のないデベロッパーでも言葉のリストをシステムに与えるだけで、テキストからそれらの語を検出/取り出しできるようになることだ。Woodは書いている: “カスタマイズされた機械学習のモデルを構築、訓練、そしてホストする重労働はすべてComprehendが行い、これらのモデルをプライベートなAPIでデベロッパーが利用できるようにする”。

これには、二つの部分がある。まず、デベロッパーは専門用語などのリストを作る。それは、たとえば法律事務所なら法律用語、自動車会社なら部品番号のリストだったりするだろう。デベロッパーがすることは、これらの用語のリストを公開するだけだ。Comprehendがカスタマイズされた言葉を見つけることを学習し、そのリストに基づくプライベートでカスタマイズされたモデルを作る。

第二の部分は、分類のカスタマイズだ。言葉のリストを作ったら、次は、それらの用語が現れる論理(ロジック)のリストを作る。それについてWoodは、こう書いている:

“言葉の用例がわずか50件でも、Comprehendはカスタムの分類モデルを自動的に訓練し、それを使ってユーザーのドキュメントを各カテゴリーに分類する。たとえばカスタマーサポートのメールを、担当部門ごとにグループ化したり、ソーシャルメディアのポストを製品別に分類、あるいはアナリストの報告書を事業部別に分類したりできるだろう”。

これらの雑多で大量のドキュメントは、カテゴリー分けして初めて役に立つし、適切な担当者にそれを渡したり、あるいはアプリケーションがプログラムの一環として利用したりできるようになる。

Comprehendはユーザーに、カスタマイズされた機械学習のモデルを作る方法を、上述のようなごく単純な方法として提供し、楽屋裏の細部は自分でやる。一般的に言っても、クラウド企業は複雑難解なものを単純化して、専門的な知識や技能のないデベロッパーでも一連のサービスを利用できるようにする。Comprehendの場合は、機械学習の知識のない者がカスタマイズされたモデルを作れる方法を提供する。

Comprehendのこの新しい機能は、今日(米国時間11/19)から利用できる。

〔参考記事
Amazon Comprehend日本語ドキュメンテーション(1)
Amazon Comprehend日本語ドキュメンテーション(2)
Amazon Comprehend用例解説(1)
Amazon Comprehend用例解説(2)
「amazon comprehend 日本語」でググると、さまざまな日本語ドキュメンテーションが出てきます。〕

[原文へ]
(翻訳:iwatani(a.k.a. hiwa