人工知能・AI
クラウドデータウェアハウス
データウェアハウス(用語)
予測モデル

企業がデータから得る各種予測をAIの力で洗練強化するContinual

次の記事

曲がった笑顔を矯正、3Dプリントされたカスタムメイドの歯列矯正用ブラケットを提供するLightForce Orthodontics

今日のデータウェアハウス中心型のデータスタックに運用レベルのAIを導入しようとするContinualが米国時間12月16日、Amplify Partnersがリードするシードラウンドで400万ドル(約4億5000万円)を調達したことを発表した。このラウンドには、Illuminate VenturesとEssence、Wayfinder、およびData Community Fundが参加した。この発表にともないContinualは、そのサービスを公開ベータで提供を開始した。その前の数カ月は、一定数の選ばれた顧客とともにテストを行っていた。

データウェアハウジング業界は売上ベースでは大きいが、実際にはSnowflakeやAmazon、Redshift、BigQuery、そしてDatabricksなど少数の企業が支配している。そのためこの市場は、それらのデータに対して独自のイノベーションを構築しようとするスタートアップにとって、取り組みやすい舞台だ。Continualの場合それは、企業に、予測モデルを構築するためのアクセスしやすいツールを提供することだ。

画像クレジット:Continual

ContinualのCEOで共同創業者のTristan Zajonc(トリスタン・ザイコン)氏は「Continualを利用すると今日的なデータチームがデータウェアハウスに対して、直接、しかも継続的にモデルの構築とメンテナンスと改良ができるようになります。実際、最も多いユースケースは、顧客チャーン(の動態把握 / 予測)やリードスコアリング(見込み客ランキング)、プロダクトレコメンデーション、在庫予測、予測的メンテナンス、サービス、オートメーションなどです。基本的にContinuallyは予測モデルと予測の両方をメンテナンスし、そのためにデータウェアハウスのデータを利用して、予測をそこへ書き戻す」という。

画像クレジット:Continual

ザイコン氏の以前のスタートアップであるSenseは、初期のエンタープライズプラットフォームで2016年にClouderaが買収した。また彼の共同創業者であるTyler Kohn(タイラー・コーン)氏はパーソナライゼーションサービスのRichRelevanceをつくり、2019年にManthan Systemに買収された。これらのスタートアップを創業しているとき2人の共同創業者は、エンタープライズにおけるAIプロジェクトの失敗率が高いことに気づいた。多くの場合、そんなプロジェクトは大きなチームを要し、プロジェクトの実行に大量のリソースを消費した。そしてその間、必要なAIのインフラストラクチャは果てしなく複雑になっていった。

「ビッグデータ(big data)の時代がビッグ複雑性(big complexity)の時代に変わろうとしていました。この問題を解決するために私たちはContinualを創業し、エンタープライズの運用AIを抜本的に単純化しようとしています。私たちは、クラウドデータウェアハウスの登場で、エンタープライズAIの構想を一新し、抜本的に単純化すべき機会が訪れていることを理解していました。データのインフラストラクチャには標準化が必要であり、今日的なデータスタックが勃興し広く普及し始めていました」とザイコン氏はいう。

Continualを使うとデータチームは、彼らの既存のSQLやdbt(data build tool)のスキルを再利用できる。そのために必要なのは、データウェアハウスにContinualを接続して、予測したい機能とモデルを宣言的に定義することだ。その際、ちょっと便利な機能は、予測をデータウェアハウスに保存してデベロッパーやアナリストが必要に応じてすぐにアクセスできることだ。

現在、このプラットフォームはSnowflake、Redshift、BigQuery、Databricksをサポートしており、チームの計画としては今後はdbtとこれらのデータプラットフォームとのパートナーシップを徐々に拡張していきたいという。ザイコン氏によれば、同社はデータ統合プラットフォームになる気はないとのことだ。

Amplify PartnersのDavid Beyer(デビッド・ベイヤー)氏は次のように述べている。「データから得られる予測的洞察を間断なく改善し続けることは、企業が効率的に稼働し、顧客への奉仕をより充実していくために欠かせません。しかしながらAIの運用化はごく一部の高度な企業を除いては永遠の課題であり続けています。Continualはデータチームの仕事の現場、すなわちクラウドデータウェアハウスに入り込み、これまでのやり方が要求する時間の数十分の一の時間で、彼らによる予測モデルの構築とデプロイと継続的改善ができるようにします。私たちが彼らに投資したのは、彼らのアプローチが抜本的に新しくて、AIをエンタープライズで活用するための正しいやり方と信じているからです」。

今回の投資で同社は、次の2年間でチームの人員を倍増し、またそのプラットフォームを自然言語処理のサポート、パーソナライゼーション、リアルタイムのユースケースなどで拡張する計画だ。

画像クレジット:Continual

原文へ

(文:Frederic Lardinois、翻訳:Hiroshi Iwatani)